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WHICH CIRCULANT PRECONDITIONER IS BETTER? 

V. V. STRELA AND E. E. TYRTYSHNIKOV 

ABSTRACT. The eigenvalue clustering of matrices Snj1A0 and Cn 1AO is ex- 
perimentally studied, where A,, Sn and Cn respectively are Toeplitz matrices, 
Strang, and optimal circulant preconditioners generated by the Fourier expan- 
sion of a function f (x). Some illustrations are given to show how the clustering 
depends on the smoothness of f(x) and which preconditioner is preferable. An 
original technique for experimental exploration of the clustering rate is pre- 
sented. This technique is based on the bisection idea and on the Toeplitz 
decomposition of a three-matrix product CAC, where A is a Toeplitz matrix 
and C is a circulant. In particular, it is proved that the Toeplitz (displacement) 
rank of CAC is not greater than 4, provided that C and A are symmetric. 

1. INTRODUCTION 

While solving systems of linear equations by an iterative method, there inevitably 
appears the problem of building up a preconditioner. It seems to be natural to 
choose as a preconditioner a matrix which, on the one hand, approximates the 
matrix of the system and, on the other hand, could be easily inverted. 

An example of easily invertible matrices is the class of circulant matrices. Cn 

[cij]_-= is a circulant if cij = c(i-j) mod n. By means of the fast Fourier transform 
(FFT), both Cn and Cn- can multiply a vector in O(n log n) arithmetic operations, 
which is rather fast. 

The requirement of approximation of a matrix A can be expressed in different 
ways. For example, one could choose C minimizing the Frobenius norm 11 A - C I F 
over some set of matrices. 

We consider the case of a linear algebraic system of equations with a Toeplitz 
matrix A. An = [aCj_]n1 is Toeplitz if a,i = ai-j,o. For such matrices circulant 
preconditioners seem to be especially efficient. 

There are several types of circulant preconditioners for systems with Toeplitz 
matrices. The Strang preconditioner Sn was the first one proposed [8]. The central 
[n/2] diagonals of this preconditioner coincide with the central [n/2] diagonals of 
the Toeplitz matrix An. The other diagonals of Sn are defined by the fact that it 
is a circulant. 

In [5] T. Chan proposed an optimal circulant preconditioner Cn. It is constructed 
to minimize the functional 11 An -Cn IF over the set of circulant matrices. The 
explicit expression of Cn's elements in the case of a Toeplitz An is given in [5]. 
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In [13] it is shown that optimal circulants can be naturally referred to as Cesaro 
circulants. 

E. Tyrtyshnikov proposed in [12] a superoptimal circulant preconditioner Tn. 
It minimizes 11 I - T-1A, |IF. Some properties of Cn and Tn were also explored 
in [12] and it was proved that they are symmetric and positive definite if A, is. 
Analogous preconditioners for Toeplitz matrices were independently studied by M. 
Tismenetsky in [10]. 

Toeplitz matrices are often associated with Fourier series of periodic functions. 
The sequence of Toeplitz matrices {An} is said to be generated by f (x) = 
Z0 OOakeikx if the first column of An is (ao, a,... , an-I)T and its first row is 
(ao, a-,... ,a-(n-l)). For the given sequence {An} we can construct sequences 
{Cn}, {Tn}, {Sn} of optimal, super-optimal and Strang preconditioners, respec- 
tively. In Figures 1.1-1.3 are shown spectra of An, Sn-iAn, Cn-1An and Tn-1An 
(n = 32) for three different functions f(x). 
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FIGURE 1.1. f(x) = 2- 2cosx 
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FIGURE 1.2. f (x)=1~cs 2- 2 
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A I I I I I I I I I I I I I I I I I I I I I I I I I I IlII tI 

S-1A l l 

CS1A I I 

TC1A l I l I 

1- I I I I I 
0 0.22 0.56 1 2 3 4 5 6 6.27 

FIGURE 1.3. f(x) = 2tr I sin x I 

One can see that the eigenvalues of all preconditioned matrices are clustered. 
Sn1An always has the sharpest cluster while Tn jAn always has the widest one. The 
number of the eigenvalues cutside the cluster seems to depend on the smoothness 
of f(x). And finally, in all three cases, Sn'A, has a condition number (ratio of the 
largest and smallest eigenvalue) larger than the condition number of C,ng A,. 

The exploration of the connection between spectral properties of Cn 'An, Sn7 An, 
Tn -'A and the properties of the generating function f (x) is very important for prac- 
tical application of circulant preconditioners, because the "better" the clustering 
rate, the "faster" the conjugate gradient method converges [1]. 

In [4, 2] it was proved that if f(x) > 0 belongs to the Wiener class, then the 
spectra of matrix sequences Sn 1An, Cn 1A, generated by f (x) are clustered at 1. 
An analogous statement for sequence Tn -A, was proved in [3]. 

A unifying approach to the theorems on distribution and clustering for Toeplitz 
and circulant matrices is proposed in [13]. On the basis of this approach the theo- 
rems from [2] were generalized to the case of f(x) C L2. 

Finally, the properties of yn(E), the number of eigenvalues which fall outside an 
c-neighborhood of the clustering point, are studied in [14]. Only on the basis of 
this investigation does it become possible to decide which type of preconditioner is 
"better". The results of [14] give the impression that with increasing smoothness 
of f(x), Strang's circulant is "better" than the optimal one (from the view point of 
spectrum clustering). However, we do not know how sharp the estimates are and 
what the constants are. So, it is useful to carry out a numerical investigation of 
the spectrum clustering. 

Attempts to perform such experiments were already made in [9]. There were 
given the spectrum distributions of Sn-1An, CnzAn , Tnj 1An (n = 32) for various 
functions f (x). The large amount of arithmetic operations required did not allow 
to increase sufficiently the matrix order, which would be essential for an exploration 
of the asymptotics of clustering. 

One relatively fast way to get some information about the spectrum of a large 
matrix is to apply to it the conjugate gradient iterations. However, this method 
allows only to investigate the extreme eigenvalues and tells almost nothing about 
the spectrum distribution. To acquire more information about the spectrum we 
need to increase considerably the number of iterations. This is impracticable in our 
case, so we choose another way. 

On the basis of the bisection method we succeeded in designing a rather fast, 
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0(n2) algorithm, using the Toeplitz decomposition of matrices. This algorithm 
gave us the opportunity to study the behavior of Yn(?) in the case of large n. 

Thus, this paper is devoted to an experimental investigation and comparison 
of the clustering properties of Sn-'An and Cn-7An. (The results of [9] showed Tn 
to be not as efficient as was expected, both for clusterization and the number of 
iterations in the conjugate gradient method. So we decided to concentrate only on 
Cn and Sn.) The paper is organized as follows. In ?2 the main definitions and 
theoretical results to be experimentally studied, are given. Section 3 is devoted to 
the description of the tools. In particular, we prove that the Toeplitz decomposition 
of CAC (C is a symmetric circulant, A is a symmetric Toeplitz matrix) contains 
no more than 4 terms. In ?4 the experimental results are discussed and some 
conclusions are drawn. 

2. DEFINITIONS AND THEOREMS 

Suppose we are given a function f(x) and its Fourier coefficients ak, 

00 

f (x) - L ak exp(ikx). 
k=-oc 

We put in correspondence to f (x) three families of matrices An, Cn, Sn: 

An = [ai&j]_ni1 is a Toeplitz matrix, 

Cn = [C(i-) mod n1inj= is a circulant matrix, 
Ck 1 ((n - k)ak + ka-(n-k)), 
Sn =[5(&j3) mod n1ij=0 is a circulant matrix, 

ak, 0O<k< n-i 

Sk = a_(n-k)v 2n-I < k < n-i, Sk 
k0= {-2 

2 

It is conventional to call Cn an optimal (Cesaro) circulant, and Sn a simple 
circulalnt (it differs from the Strang construction only by the diagonal with number 
[n/2]). 

Below we consider only real 2w-periodic functions f(x). It is easy to see that 
these conditions on f(x) make the matrices An, Cn, Sn Hermitian. 

Let an(?) be the number of A(n) 0 (jt - c, [t + E). Then the point , is called a 

cluster of the sequence {A(n) In= if 

lim -n) O- 
n-*oo tn 

A cluster is called proper if yn(?) < c(?), where c(E) does not depend on n. 

The first results on the eigenvalue clustering of Cn- 1An and Sn-1 An are given in 
[4, 2]: 

Theorem 2.1 ([2]). If f (x) > m > 0 belongs to the Wiener class (Z I| ak I< 
+oo), then optimal circulants Cn, and for sufficiently large n simple circulants Sn, 
are positive definite and the point 1 is a proper cluster for the eigenvalues of Cn- An 
and Sn-'An. 
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The unifying approach, put forward in [13], allowed to generalize Theorem 2.1 
to the case of f(x) E L2: 

Theorem 2.2 ([13]). Let f (x) E L2 and f (x) > m > 0. Then optimal circulants 
Cn are positive definite, and the eigenvalues of the matrices Cn-1A, are clustered 
at 1. If A(Sn) > 6 > 0, then the same is valid for S,I1An. 

In [14] it was shown that the condition f (x) > m > 0 is not essential, and 
Theorem 2.2 was generalized to the case where f (x) is a slightly vanishing function. 
A 27r-periodic Lebesgue-integrable function f (x) is called slightly vanishing if 

lim | Y(If(x) )dx 0, 
E6-4?+ J_ 

where 

0, x < 0, O<>X<. 

Theorem 2.3 ([14]). Let f (x) be a nonnegative slightly vanishing function from 
L2, and An, Cn, Sn are the associated Toeplitz matrices, optimal and simple cir- 
culants, respectively. Assume also that the matrices Cn, Sn are positive definite. 
Then the eigenvalues of Cn-0An and Sn-,An are real and have a cluster at 1. 

The drawback of Theorem 2.2 is the condition of positive definiteness. It can 
be removed by the construction of improved optimal and simple circulants Cn and 
Sn. The eigenvalues of these circulants coincide with the eigenvalues of Cn and Sn 
except for the nonpositive ones, which are changed to 6 > 0. In [14] it is shown 
that Theorem 2.3 still holds for Cn and Sgn 

The theorems given above say almost nothing about the properties of the func- 
tion an (E), so they do not allow a comparison of Cn and Sn. The results of [14] 
provide us with such an opportunity. But before citing these theorems, we define 
the class of functions for which they are valid. 

Suppose a 27r-periodic function f (x) is such that its mth derivative f(m) (x) is 
piecewise continuous and has a bounded derivative on each continuity interval. Let 
Km denote the set of all such functions. 

Further, assume that there is a finite number of points xj E [-Er, r], j - 

1,... ,t, such that 

(2.1) f (xj)=O j=1..,t 

Assume that at every xj both left and right derivatives of some order are distinct 
from zero. Denote by p? the orders of the first such derivatives, that is, 

(2.2) f (1) (x. + 0) = ...=f (Pt -') (xj + O) = , f (Pt ) (xj + O) :+ ?, 

f (')(X. 0) = f (X_ 0) O= , f (P ) (xj - 0) 
0 , 

and set 

(2.3) p =max{p> j=1, * t} 

Let K(P) denote the set of those f (x) E Km which are characterized by the rela- 
tionships (2.1)-(2.3). 
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Theorem 2.4 ([14]). Assume that f (x) c K(P) is nonnegative. Then the eigenval- 
ues of Si 'An are real and clustered at 1 so that 

(2.4) -yn'(E) = 0(n P+ 

Theorem 2.5 ([14]). Assume that f (x) C Ki(P) s nonnegative. Then the eigenval- 
ues of Cn-1An are real and clustered at 1 so that 

0 (nT+1 ), m > 15 

(2.5) Yc (?) - 

'1. O(nA -Inn), m=1. 

If f (x) can be expressed in the form 

v 

(2.6) f(x) = E ake,ikx 

k=-zv 

then the following theorem holds. 

Theorem 2.6 ([14]). Assume that f (x) is a nonnegative function of the form (2.6), 
and not everywhere zero. Then the eigenvalues of Sn-1An are clustered at 1 so that 

(2.7) ns(c) - 0(1) 

(the proper cluster). 

From the above results it follows that if the function is smooth, the simple 
circulant Sn should be "better" (from the viewpoint of spectrum clustering). But 
we do not know how sharp the estimates (2.4), (2.5) are and what the constants in 
them are. It appears that this question should be clarified experimentally. This is 
the aim of ?4 of our paper. 

3. TOOLS OF RESEARCH 

In this section we describe a very efficient method for solving the following prob- 
lem. Given a symmetric Toeplitz matrix A and a symmetric positive definite circu- 
lant matrix C, both of order n, find the number of eigenvalues of P _ CAC lying 
in an E-neighborhood of 1. 

As we want to deal with large n, we resist the use of the classical methods for 
dense matrices. We try to apply to our problem the idea underlying the bisection 
method. In other words, we will rely upon the following well-known fact. 

Lemma 3.1. Suppose a symmetric matrix P of order n has nonsingular leading 
submatrices Pk of order k for all k = 1,... ,n. Then the number of negative 
eigenvalues of P Pn coincides with the number of sign changes in the sequence 

1, det P1,... , det Pn. 

The bordering method certainly is one of the natural methods for the leading 
minors computation. However, we would like to use the specific structure of P. As 
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was shown in [6], the bordering method can be successfully applied to certain types 
of matrices, for example matrices which are a sum of products of triangular Toeplitz 
matrices. The algorithm from [6] for such matrices with q terms can be easily 
modified ([11]) to an algorithm requiring 5q4 rn/ multiplications and additions. In 
essence, it is the algorithm already proposed in [7] but within the confines of a 
block method. 

However, we will use a more efficient algorithm ([15]) for computation of the 
inertia of matrices defined by their Toeplitz decomposition. This algorithm needs 
only (q - 1)n2 multiplications and additions. It also has a parallel structure. 

So, the main thing we have to do is to find a fast way of performing the Toeplitz 
decomposition of P. We call 

q 

(3.1) T = E L(a,s)L T(0,s) 
s=1 

the Toeplitz decomposition of the matrix T, provided that 

[ s's,O 0 Os /3s,0 ... sn- 

L(ats)LT3s=| 
6, t ll 50 sr- 

a 0%s,n-1 ais,n-2 ... as.0 I Os, 

It is easy to see that 

q [ s,0o 

(3.2) f [s3S,o ) ,I s,n-1] -AT [Atij]n-1l, 
s= I I, 

o 
s=l 

Ces,n-1 

where 

T -[tj]I 

(3.3) Atij - ti ti-1,-1, 0 < i,j ?< n -1, 

Ato - to, At0= toi, i - 0 ... n - 

The smallest q is called the Toeplitz rank (displacement rank in the terminology of 
[7]) of T. 

Toeplitz ranks were introduced in [7]. In [11] it was proved that the Toeplitz 
rank of a product of two matrices is not greater than the sum of the factors' ranks 
increased by 1. It is easy to see that the Toeplitz rank of a Toeplitz matrix is 2. The 
matrix P contains three Toeplitz factors, so the Toeplitz rank of P is not greater 
than 8. However, we show that it does not exceed 4. 

Theorem 3.1. The Toeplitz rank of P = CAC, where C is a symmetric circulant 
and A is a symmetric Toeplitz matrix, is not greater than 4. 
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Proof. We have 

n-1 n-1 

Pij = S ci-lal-kCk-j 
k=O 1=0 

n-I n-1 n-i n-1 

= C_j 5 ci-lal + ci 5 a-kck-j + Ci-lal-kCk-j, 0 < J,j < n -1; 

1=0 k=i k=l 1=1 

n-in-I n n 

Pi-lj- = c i--lal-kCk-j+l = 5 5 ci-lal-kCk-j 
k=0 1=0 k=l 1=1 

n n-I 

Cn-j 5 Ci-lal-n + Ci-n 5 an-kCk-j 
1=i k=l 

n-i n-1 

+ : 5 ci-lal-kCk-j , 1 < i,j < n-1; 
kil 1=1 

APij =Pij -Pi-lij-1 
n-1 n-1 

ci C: a-kCkj - Ci-n E an-kCk-j 
k=l k=l 

n-i n 
+ Cj a Cn-j ci-aln 1 <i 1 

I:c-3a < 'I-I 
I n- - zIIn 

1=0 1=1 

Here we used that C, A are Toeplitz matrices, and so aij = ai-j, cij = ci_j. 
Since A, C are symmetric and C is a circulant, we know that 

ak = a_k, an = ao, Ck = C-k, Cn = CO Ci = Cn-i. 

So, in our case (for 1 < i, j ?i n- 1), 

(3.4) 
n-I n-i n-I n-I 

Apij = ci 5 akCk-j 
- Ci 5 an-kCk-j + Cj Ci-kak -Cj Ci-kak-n 

k=O k=O k=O k=O 

n-1 n-1 

Ci 5 cj-k(ak -an-k) + Cj ci-k(ak- an-k) c cidj + dicj 
k=O k=O 

where 

(3.5) 
n-1 

di = Ci-k(ak - an-k), 
k=O 

n-I 

ZXPio = APoi = Poi = Pio 5 E Ci-lal-kCk, i=O,...,n-1. 
k,1=0 
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In accordance with (3.1)-(3.2) and (3.4)-(3.5), we get the Toeplitz decomposition 
of P with q 4: 

(3.6) 

2Poo 0 1 Poo P1,o ... Pn-1,O 
P = | PPOO ... Pn-2,0 

LPn-1,O Pn-2,0.. 2Poo L 0 2Poo i 

N 
O 2 d1 ... dnI 

dl 0 0 
+ 

0 1??1k?. 

Cn-I . C, ? L? 

O ? C1 . Cn-I 

+ 
0 

C 

dn-I ... dl i O 

This completes the proof. 

To use the algorithm from [15], the Toeplitz decomposition should be expressed 
in the following form: 

q 

(3.7) T= E k3 (a,)L'(a,) 
s=1 

i.e., 

q [ s,O 

(3.8) A\T = E ks . [(s,0v a?ss,n-1 
s=l Ces,n-1 

The relations (3.4)-(3.6) can be transformed into the form (3.7)-(3.8) by using the 
following obvious result. 

Lemma 3.2. If 
UO VO 

U= VI, =, 

Un-[ Vn-1 

then 

T T 1(U + V)(U + V) UV + vu -(u+v( ) - (U _ V)(U _V)T. 2 2 

Note that if we set do 0 in the vector d = [do,dl,... ,dn_1]T, which is a 
product of the matrix C by the vector & = [0, a - an_ I, ... , anI - al] T, we get 
the vector d = [0,di,... ,dnI]T needed in (3.6). As C is a circulant, d can be 
computed in O(n log n) arithmetic operations. The vector p = p00,... Pn-1,O]T 
can be computed at equal cost (as p is the first column of CAC). 
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In our concrete case, P is of the following form: 

P = C112AC /2, 

where C is a circulant preconditioner and A is the Toeplitz matrix of the system. 
The spectrum of P is the same as the spectrum of C-1A, and so we can compute 
7Yn(E) applying Lemma 3.1 and our algorithms to the matrices P - (1 + E)I, P - 

(1-c)I. 
The computation of the first column of C1/2 can also be performed in O(n log n) 

arithmetic operations ([11]). Thus, computing the number of C-1A's eigenvalues 
which lie in the interval (1 - E,1 + E) costs 0(n2) arithmetic operations, which 
allows us to perform experiments with matrices of rather large order. 

All experiments presented in ?4 were made on an IBM PC/AT-386. All programs 
were written in FORTRAN 77. 

4. RESULTS OF EXPERIMENTS 

In this section we experimentally study the function ayn(E) the number of 
the eigenvalues of the matrices C(- 'A, and 5n-,A, which fall outside the interval 
(1 - E,1 1-+ E). In all experiments we assume E = 0.1. 

We begin with an illustration of Theorem 2.1. Assume 

f(x) =0.1 +27r|sin 21. 

It is easy to see that in this case f (x) belongs to the Wiener class. Besides, f (x) > 
0.1 > 0, i.e., f(x) obeys the conditions of Theorem 2.1. This means that the spectra 
of Cn 1A, and Sn 1A, must have a proper cluster at 1 (here, Cn = Cn, Sn = Sn 
are positive definite matrices as f(x) > m > 0 [4, 2]). This is confirmed by the 
experimental results shown in Table 4.1. (Everywhere below, _1A refers to (7- An 
and ynS to Sn 'An-) 

The dependence of ayn(E) on n should appear if f(x) is equal to 0 even at one 
point. The case of such functions is studied in Theorems 2.4-2.6. The next four 
examples are devoted to these theorems. 

To begin with, let 

f (x) = 27rI sin 2 1. 
This function is continuous and vanishes at x = 27rk, k = ...,-101, .... How- 
ever, even the first derivative of f(x) is discontinuous and not equal to 0 at these 
points. So, in this case, p = 1, m = 1, and according to (2.4), (2.5) we have 

(4.1) . 'j() = Q(n1/2), C(6) Q 0(n1/2 ln n). 

Comparing (4.1) with the experimental results, shown in Table 4.2, we can see that 
estimates (4.1) do not have a large margin and correctly reflect the behavior of 
'Tn (E).- 

TABLE 4.1 

n 32 64 128 256 512 102412048140961 

|~~ a 4 5 6 5 5 5 5 5 
'ns 

- 
2 3~ 4 5 5 5 5 5 
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TABLE 4.2 

32 64 128 256 512 1024 2048 4096 
7n7 4 6 6 9 10 11 12 14 

2_ 4 4 4 6 7 8- 

TABLE 4.3 

n 32 64 128 256 512 1024 2048 4096 
_ 11 15 20 26 38 53 74 103 

___ 4_ __ 4 ___4 5 1 6 9 1 12 1 177 

TABLE 4.4 

n 32 64 128 256 512 1024 2048 4096 
77 8 11 16 21 30 42 59 84 

- 4 -4 4 55 6 7 8 

We now consider a function which equals zero with its first derivative at a point 
of [-7r, 7r]. One such function is 

f(x) = x2, f(0) = f'(O) = 0. 

Since we consider only 27r-periodic functions and f'(7r) :8 f'(-7r), f'(x) is discon- 
tinuous. So p = 2, m = 1, and we get 

(4.2) ays(E) = 0(n273) ,y(E) = O(n23 lnrn). 

The results of the experiments (Table 4.3) again show that the estimates (2.4), (2.5) 
are rather adequate, though not perfectly sharp. 

We now increase smoothness of the generating function and consider 

f(x) - 
xsinx, -7r/2 < x < 7r/2, 
7r/2-cosx, -r <x< -7r/2, 7r/2 < x < 7r, 

f(0) = f'(0) = 0. 

Now, f'(x) is continuous on the whole real axis, however f "(x) is not, i.e., p = 2, 
m = 2, and 

(4.3) An (E) = 0(n/2), a - 0(n7/3) 

According to (2.4), (2.5), an increase of the smoothness should entail improve- 
ment of the clustering. This is clearly observed for S and to smaller degree for C 
(Table 4.4). 

The next function we consider is 

f(x) = 2-2cosx, p=2, m=o. 
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TABLE 4.5 

n 32 64 128 256 512 1024 2048 4096 
tYn 9 12 16 23 32 44 61 85 

<Yr 3 3 3 4 4 4 4 4 

Here, f(x) has a finite Fourier series (ao = 2, a1 = -1, ak = 0, k 2,... ,n - 1). 
This means that Theorem 2.6 can be applied to this function, and 

(4.4) s -0(1). 

According to Theorem 2.5, we have for C 

(4.5) 0Y (;-(n 2/ ). 

(Note that in this case Sn is singular for all n and so Sn Sn ) Looking at the 
results of the experiments shown in Table 4.5, we see that the estimate (4.4) is 
almost ideally true. As to the estimate (4.5), it apparently could be somewhat 
improved. 

We note that in contrast to 5' 1A, smoothness of the generating function only 
weakly influences the eigenvalue clustering of Cn 1An. This is not surprising because 
Sn's eigenvalues are the values of the partial sums of f(x)'s Fourier series, chosen 
on the uniform mesh: 

Ak (Sn) = f[n/21 ( n ) k = 0, 1,. .. ,n- 1, 

m 

fm(x) = E ak exp(ikx), 
k=-m 

while Cn's eigenvalues are the values of f(x)'s Cesaro sums, chosen on the uniform 
mesh: 

2rrk 
Ak(Cn) = Un()J kZ = 0, 1, ... n n-1, 

n(X) = _+ Z fm(X) 

([13]). From the theory of Fourier series it is known that Cesaro sums converge 
uniformly to the function without dependence on its smoothness, while the con- 
vergence of partial Fourier sums essentially depends on the function's smoothness. 
So, we can expect that in the case of a discontinuous generating function, the spec- 
trum clustering rate of Cn-'An is better than that of Sn-An. This expectation is 
confirmed by the following example (Table 4.6): 

r xsinx, -7/2 < x < ir/2, 
(x) -cosx, -r < x <-/2, /2 < x < r, 

f(0) - fl(O) = 0. 

Here, f (x) is discontinuous at the point x = 7r/2. 
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TABLE 4.6 

n 32 64 128 256 512 1024 2048 4096 
A 12 18 25 34 45 63 86 120 
A 16 21 29 39 53 72 100 140 

TABLE 4.7 

n 32 64 128 256 512 1024 2048 4096 
An (0.1) 25 47 93 179 362 703 1397 2761 
-4C(0 9) 18 39 83 170 344 692 1385 2746 
yns (0.1) 25 47 91 178 367 710 1408 2713 

- 'yS(0.9) 19 40 83 171 1347 700 1389 2766 

This experiment serves also as an illustration of Theorem 2 from [16]. This 
theorem states that in the case of piecewise continuous generating functions, 'yc 
grows at least as O(logn). 

Consider now the slightly vanishing condition of the generating function in The- 
orem 2.3. The example of 

f (x) = 1, -l <x < 1 
0 -7r < x <-1,1 < x < 7 

shows that it is essential for the clustering. Actually, this function is equal to 0 on 
a segment, and so the condition 

lim s f/ W(If (x) D dx = 0, 

is not satisfed. The results of the experiments (Table 4.7) show that most of the 
eigenvalues of C7- An and Sn-'An lie near 0. 

In conclusion, let us say a few words about which circulant is "better", simple 
(Strang) or optimal. If f(x) > m > 0, then no essential difference between Cn 
and Sn is observed. If f(x) is continuous, slightly vanishing and vanishes at least 
at one point, then Theorems 2.3-2.6 affirm that Sn should behave "better" than 
Cn (from the viewpoint of clustering). This is confirmed experimentally. If f(x) is 
discontinuous, we can expect Cn to be "better". 

However, the eigenvalue clustering is not the only feature of preconditioning. 
The other important feature is the condition number of the preconditioned matrix. 
Experiments show that if f(x) = 0 somewhere in [-7r, 7r], the condition number 
of Sn-jAn is much larger than the condition number of Cn- 1An For example, if 
f(x) = x2, then for n = 1024, KC-1A < 104 while Ks-An > 2 106 (K is the 
condition number). Thus, when f has a zero, we recommend the preconditioner 
Cn. 
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